AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR (PUNJAB)

DESCRIPTION OF PROGRAMME OUTCOMES

NAME OF THE DEAPRTMENT: Physical Sciences

NAME OF THE PROGRAMME:B.Sc. (Nonmedical /Computer Science)

P.O. No.	Description of Programme	Domain as per Bloom's	Level of Bloom
	Outcome	Taxonomy	Taxonomy*
PO-1	Basic Scientific Knowledge: Acquired the knowledge With facts and figures related to various subjects in pure sciences.	Cognitive	1,2,3,4,5,6

PO-2	Communication skills: Build the skills of speak, write, read and listen	Psychomotor	1,2,3
PO-3	Ethics: Adapt scientific conduct and ethical responsibilities.	Affective	1,2,3,4
PO-4	Life-long learning: Engaged in Life-long learning with changing environment and positive attitude.	Affective	1,2,3,4,5
PO-5	Social Contribution and Social Responsibility: Apply scientific theories and their relevancies in day to day life.	Affective	4,5,6
PO-6	Team Work: Execute the knowledge in various fields of science and work as a team.	Psychomotor	1,2,3,4
<i>PO-7</i>	Personality development:		
	Accumulate, management, principles and apply these to develop overall	Affective	1,2

	personality.		
<i>PO-8</i>			
	Leadership skills: To cultivating a conductive environment, effective leadership quality and attributes to achieve the goals of organization.	Psychomotor	2,3,4
<i>PO-9</i>	Problem solving skills:		
	Identify, analyze,evaluate and apply information scientifically to solve problems.	Affective	4,5,6
PO-10	Environment, Sustainability and Diversity: Develop flair by participating in various social and cultural activities voluntarily.	Cognitive	2,3
PO-11/ PSO1	Critical thinking: Working on the critical thinking and the scientific knowledge to design carryout, record and analyze the results of chemical reactions.	Cognitive	1,2,3,4,5,6
PO-	Modern Tool Usage:		
12/PSO2	Learn the laboratory skills needed to design, safely and interpret different	Psychomotor	1,2,3,4,5,6

	instruments.		
PO-13/	Project management:		
PSO3	Demonstrate the knowledge of managing a project in multi disciplinary environment.	Cognitive	1,2,3,4,5,6
PO-14/			
PSO4	Employability skills: Inculcate skills to excel in the fields of science, information technology and its related fields.		1,2,3,4,5,6
		Psychomotor	
PO-15/ PSO5	Computing and technology : Create ideas and solutions to existing problems in modern day issues with	Cognitive	123456
	latest trends in computing.	Cognitive	1,2,3,4,5,6

 $* These {\it six levels} are: (1) knowledge (2) comprehension, (3) application, (4) analysis, (5) synthesis, and (6) evaluation and (6) evaluation and (6) evaluation and (7) evaluation$

PO1-10GENERIC

PO11-15SPECIFICorPSO

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR
PUNJAB
DESCRIPTION OF COURSE OUTCOMES
NAME OF THE DEPARTMENT: Mathematics
NAME OF THE PROGRAMME: M.Sc. II (SEM-3)
NAME OF COURSE : Fuzzy sets and applications
NAME OF FACULTY : AP Rajinder Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Explain Fuzzy numbers, Linguistic variables and Fuzzy equations.	Tests/ Class Assignments Class
CO-2	State crisp and Fuzzy applications.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Deduce the compatibility and odering relations.	Group discussion
CO-4	Compute Possibility theory.	Authentic problem Solving/ Group Discussion
CO-5	Analyse the uncertainty and Non specificity of fuzzy.	Class Assignment/ Seminar/ Group Discussion
CO-6	Acquire the applications of fuzziness of fuzzy sets and fuzzy logic.	Class Assignment/ Group Discussion/ Authentic problem solving

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR	
PUNJAB	
DESCRIPTION OF COURSE OUTCOMES	
NAME OF THE DEPARTMENT: Mathematics	
NAME OF THE PROGRAMME: M.Sc.II	
NAME OF COURSE : Category theory –I (SEM-3)	
NAME OF FACULTY : AP Kirandeep Kaur	

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Explain definations of Category theory and tge category of Modules.	Tests/ Class Assignments Class
CO-2	Compute the product of two categories, Dual categories and Arrow Category.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Write the uniqueness upto isomorphism, examples of products viz. Hom- sets, Covarient functors.	Group discussion
CO-4	Deduce the duality principle and coproduct of monoids of abelian groups.	Authentic problem Solving/ Group Discussion
CO-5	Explore tge properties of pull back and direct limit of groups.	Class Assignment/ Seminar/ Group Discussion
CO-6	State the concept of cartesian closed categories, stone duality and ultra filter in Boolean Algebra.	Class Assignment/ Group Discussion/ Authentic problem solving

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR PUNJAB

DESCRIPTION OF COURSE OUTCOMES NAME OF THE DEPARTMENT: Mathematics NAME OF THE PROGRAMME: M.Sc. II (SEM-4) NAME OF COURSE : Mathematical Methods NAME OF FACULTY : AP Sanjivani

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Explain the linear Integral equation of first and second kind.	Tests/ Class Assignments Class
CO-2	Derive the relation between linear differential equation and Volterra's equation.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Deduce volterra's equation and Volterra's solution of fredholm equation.	Group discussion
CO-4	Explore the properties of Simple variational problems.	Authentic problem Solving/ Group Discussion
CO-5	the concept of Euler's equation and invarience of euler's equation.	Class Assignment/ Seminar/ Group Discussion
CO-6	Compute fixed end point problem for unknown functions.	Class Assignment/ Group Discussion/ Authentic problem solving

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR	2
PUNJAB	
DESCRIPTION OF COURSE OUTCOMES	
NAME OF THE DEPARTMENT: Mathematics	
NAME OF THE PROGRAMME: M.Sc. II (SEM-4)	

NAME OF COURSE : Optimization Techniques-II NAME OF FACULTY : AP Rupinder Kaur

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Compute Wolfe's modified simplex method, Beale's method and Convex programming.	Tests/ Class Assignments Class
CO-2	Solve problems related to lemke's complementary pivoting algorithm, Seperable programming algorithm.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Introduce the components of decision theory.	Group discussion
CO-4	Solve the geometric programming problem.	Authentic problem Solving/ Group Discussion
CO-5	Explore the properties of simulation and its advantages and disadvantages.	Class Assignment/ Seminar/ Group Discussion
CO-6	Analyse the problems of Goal programming.	Class Assignment/ Group Discussion/ Authentic problem solving

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR PUNAJB DESCRIPTION OF COURSE OUTCOMES NAME OF THE DEPARTMENT: Mathematics NAME OF THE PROGRAMME: M.Sc. II (SEM-4) NAME OF COURSE : Category theory -II NAME OF FACULTY : AP Kirandeep Kaur

C.O. No.	Description of Course	Method/s of Assessment
C.U. NO.	Description of Course	wethou/s of Assessment

	Outcome	
CO-1	Define functor category and natural isomorphism	Tests/ Class Assignments Class
CO-2	Compute Bifunctor lemma, Fubtor categories and Eauivalences.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Deduce the pointer set and partial maps, slice categories and indexed families.	Group discussion
CO-4	State the Yoneda embedding, Yoneda Lemma and applications.	Authentic problem Solving/ Group Discussion
CO-5	Explain Adjunction between categories, left and right adjoints.	Class Assignment/ Seminar/ Group Discussion
CO-6	Use the triangle identities, Monads and Algebras for monads.	Class Assignment/ Group Discussion/ Authentic problem solving

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL C	OLLEGE BELA ROPAR
PUNJAB	
DESCRIPTION OF COURSE OUTCOMES	
NAME OF THE DEPARTMENT: Mathematics	
NAME OF THE PROGRAMME: M.Sc. II (SEM-4)
NAME OF COURSE : Non-linear programming	1
NAME OF FACULTY : AP Rajinder Kaur	

C.O. No.	Description of Course Outcome	Method/s of Assessment
	Define Non -linear	
CO-1	programming and its	Tests/ Class Assignments Class
	examples.	

	Derive Constraind and	Class Assignment/ Home
CO-2	unconstrained problems with	Assignment/Authentic
0-2	equality and inquality	problem
	constraint.	solving
	Deduce Fibonacci search,	
CO-3	Golden section and Rosen	Group discussion
	brock search method .	
	Compute Newton Raphson,	Authentic problem Solving/
CO-4	Quadratic and Cubic	Group
	Interpolation method.	Discussion
	Explore the properties of	Class Assignment/ Seminar/
CO-5	Constrained optimization	Group
	problem.	Discussion
	Coluce Marguardt's mothed	Class Assignment/ Group
CO-6	Solve Marquardt's method,	Discussion/
	parten method.	Authentic problem solving

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR PUNJAB DESCRIPTION OF COURSE OUTCOMES NAME OF THE DEPARTMENT: Mathematics NAME OF THE PROGRAMME: M.Sc. II (SEM-4) NAME OF COURSE : Analytic Number Theory NAME OF FACULTY : AP Raveena Saini

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Explain Arithmetic functions, Euler's totient function.	Tests/ Class Assignments Class
CO-2	Deduce big oh notation, Asymptotic equality function.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Compute partial sum of	Group discussion

	drichlet product.	
CO-4	State Shapiro's Tauberian theorem.	Authentic problem Solving/ Group Discussion
CO-5	Explore the elementry properties of groups.	Class Assignment/ Seminar/ Group Discussion
CO-6	Analyse Asymptotic formula for partial sums.	Class Assignment/ Group Discussion/ Authentic problem solving

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR
PUNJAB
DESCRIPTION OF COURSE OUTCOMES
NAME OF THE DEPARTMENT: Mathematics
NAME OF THE PROGRAMME: M.Sc. II (SEM-3)
NAME OF COURSE : Differential Manifolds
NAME OF FACULTY : AP Rupinder Kaur

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Define Differentiable Manifolds and its examples.	Tests/ Class Assignments Class
CO-2	Compute the differentiable map on manifolds.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Explore the properties of Lie bracket of vector fields and Integral curves.	Group discussion
CO-4	State the concept of torsion tensor and curvature tensor of a connection.	Authentic problem Solving/ Group Discussion
CO-5	Discuss the Binachi's identities	Class Assignment/ Seminar/

	and christoffel Symbols.	Group
		Discussion
CO-6	Acquire the knowledge of Gauss wringarten formulae and their applications.	Class Assignment/ Group Discussion/ Authentic problem solving

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR
PUNJAB
DESCRIPTION OF COURSE OUTCOMES
NAME OF THE DEPARTMENT: Mathematics
NAME OF THE PROGRAMME: M.Sc. II (SEM-3)
NAME OF COURSE : Field Theory
NAME OF FACULTY : AP Sanjivani

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Define Field and examples of fields.	Tests/ Class Assignments Class
CO-2	Explain the concept of Einstein criterion and Krnoker's theorem.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Discuss Lagrange's theorem on primitive elements.	Group discussion
CO-4	Analise the fixed fields and Automorphism groups.	Authentic problem Solving/ Group Discussion
CO-5	Explore the properties of radicals and fixed fields.	Class Assignment/ Seminar/ Group Discussion
CO-6	Explain Ruler and compass construction.	Class Assignment/ Group Discussion/ Authentic problem solving

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPA	١R
PUNJAB	
DESCRIPTION OF COURSE OUTCOMES	
NAME OF THE DEPARTMENT: Mathematics	
NAME OF THE PROGRAMME: M.Sc. II (SEM-3)	
NAME OF COURSE : Optimization Technique-I	
NAME OF FACULTY : AP Raveena Saini	

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Explore the properties of LPP and Properties of duality by using suitable theorems.	Tests/ Class Assignments Class
CO-2	Use the strategies for game theory for maximum minimum principle concept of dominace.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Demonstrate the methods to understand the complimentary slackness theorem and duality theorems.	Group discussion
CO-4	Deduce suitable theory to understand initial basic feasible solution using North West Corner and Least Cost Method.	Authentic problem Solving/ Group Discussion
CO-5	Compute Mathematical formulation of Assignment problem, unbalanced problem and Salesman Problem.	Class Assignment/ Seminar/ Group Discussion
CO-6	State Discrete changes in the cost vector, Requirement	Class Assignment/ Group Discussion/

vector and coefficient matrix,	Authentic problem solving
Deletion of variable and	
addition of variable.	

NAME OF THE DEPARTMENT: MATHEMATICS

NAME OF THE PROGRAMME: M.Sc. 1st (sem1)

NAME OF COURSE : Algebra NAME OF FACULTY : A.P Rajinder Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Compare and contrast about the fundamental theorem of finitely generated abelian groups, homomorphism between two cyclic groups.	Class Tests/ Class Assignments
CO-2	Increase the knowledge of groups, subgroups ,semi- group, monoid ,quasi groups	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Explain about the permutation group ,clan-equation, alternating group and their simplicity	Group discussion
CO-4	Define about Sylow's group, Sylow's theorem, Ideals, matrix ring and their ideals.	Authentic problem Solving/ Group Discussion
CO-5	Improve the Knowledge for normal Subgroup, cyclic groups and apply these results for on different examples.	Class Assignment/ Seminar/ Group Discussion
CO-6	Ability to understand a large class of commutative rings by regarding them as quotients of polynomial rings by suitable	Class Assignment/ Group Discussion/ Authentic problem solving

ideals.	

NAME OF THE DEPARTMENT: MATHEMATICS

NAME OF THE PROGRAMME: M.Sc. 1st (sem1)

NAME OF COURSE : Differential geometry

NAME OF FACULTY : A.P Sanjivani

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Explain the basic concept and results related to space curves ,tangents , normal and surfaces.	Class Tests/ Class Assignments
CO-2	Explain the geometry of different types of curves and space.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Enhance the knowledge how to solve the Gaussian and mean curvatures.	Group discussion
CO-4	Utilize geodesics it's all related properties and theorems.	Authentic problem Solving/ Group Discussion
CO-5	Determine principal directions of curvature, asymptotic lines and then apply their important theorems and results to study various properties of curves and surfaces.	Class Assignment/ Seminar/ Group Discussion
CO-6	Explain the codazzi –Mainardi equation and compact surface of constant Gaussian curvature.	Class Assignment/ Group Discussion/ Authentic problem solving

NAME OF THE DEPARTMENT: MATHEMATICS

NAME OF THE PROGRAMME: M.Sc. 1st (sem1)

NAME OF COURSE : Mathematical Analysis

NAME OF FACULTY : A.P Rupinder Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Apply the knowledge of concepts of mathematical analysis in order to theoretical development of differential mathematical techniques and their applications.	Class Tests/ Class Assignments
CO-2	State the nature of abstract mathematics and explore the concept in further solution.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Identify challenging problems in taylor's theorem and find their appropriate solution	Group discussion
CO-4	Deal with axiomatic structure of measurable spaces and generalised the properties of measure and lebesque measure.	Authentic problem Solving/ Group Discussion
CO-5	Use theory of vitali lemma and dini derivative in solving different problems.	Class Assignment/ Seminar/ Group Discussion
CO-6	Extend their Knowledge of mathematical analysis for further exploration of the subject for	Class Assignment/ Group Discussion/ Authentic problem solving

going into research.	

NAME OF THE DEPARTMENT: MATHEMATICS

NAME OF THE PROGRAMME: M.Sc. 1st (sem1st)

NAME OF COURSE : Topology 1st

NAME OF FACULTY : A.P Raveena Saini

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Develop the concepts of topological space and basic definitions of open sets, neighbourhood, interior, exterior, closure and their axioms for defining topological space.	Class Tests/ Class Assignments
CO-2	Explain the concepts of base and sub base, create new topological space by using subspace.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Define the continuous map, restriction of domain and range, piecewise definition of map's and neighbourhood finite families.	Group discussion
CO-4	Analyse Row point of space are separated by open sets , housdroff spaces and their importance	Authentic problem Solving/ Group Discussion
CO-5	Compare and contrast the Cartesian product spaces and image of connected sets.	Class Assignment/ Seminar/ Group Discussion

CO-6 CO-6 Apply Knowledge for solve the elementary concepts in product spaces and slices in Cartesian products.	Class Assignment/ Group Discussion/ Authentic problem solving
--	---

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR PUNJAB

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT: MATHEMATICS

NAME OF THE PROGRAMME: M.Sc. 1st (sem2nd)

NAME OF COURSE : Algebra II

NAME OF FACULTY : A.P Rajinder Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Utilize the polynomial rings UFD, Euclidean Domain, principal Ideal Domains to solve different related problem.	Class Tests/ Class Assignments
CO-2	Analyse different types of modules, sub modules, direct sum of sub modules.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Apply the Knowledge of Algebra to attain a good mathematical maturity and enables to build mathematical thinking and reasoning.	Group discussion
CO-4	Design, analyse of and implement the concepts of artinian modules, noetherian modules and artinian implies noetherian in rings.	Authentic problem Solving/ Group Discussion
CO-5	Create, select and apply	Class Assignment/ Seminar/

	appropriate algebraic	Group
	structures	Discussion
	such as Hilbert basis theorem,	
	composition series of a	
	module.	
	Get the information about the	Class Assignment/ Group
CO-6	Cohen theorem , radical ideal	Discussion/
CO-8	, nil radical , Jacobson Radical	Authentic problem solving
	and Radical of an artinian ring	Authentic problem solving

NAME OF THE DEPARTMENT: MATHEMATICS

NAME OF THE PROGRAMME: M.Sc. 1st (sem2nd)

NAME OF COURSE : Complex Analysis

NAME OF FACULTY : A.P Sanjivani

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Know the fundamental concept of complex analysis.	Class Tests/ Class Assignments
CO-2	Explain the concept of complex integrals and apply Cauchy integral theorem and formula.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Evaluate limits and checking the continuity of complete function and apply the concept of analyticity and the Cauchy-Riemann equation	Group discussion
CO-4	Solve the problems using Taylor's theorem, Laurent series in an annulus.	Authentic problem Solving/ Group Discussion
CO-5	Apply the knowledge of	Class Assignment/ Seminar/

	complex to find the general definition of analytic function and analytic continuation by	Group Discussion
	power series method.	
CO-6	Define the information about the Harmonic function on a disc and Schwarz reflection principle	Class Assignment/ Group Discussion/ Authentic problem solving

NAME OF THE DEPARTMENT: MATHEMATICS

NAME OF THE PROGRAMME:M.Sc. 1st (Sem 2)

NAME OF COURSE :Functional Analysis

NAME OF FACULTY : A.P Kirandeep Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Explain the fundamental concept of functional analysis and their role in modern mathematics	Class Tests/ Class Assignments
CO-2	Analyse the concept of functional analysis for example continuous and bounded operators, normed spaces and Hahn –branch theorem in linear spaces.	Class Assignment/ Home Assignment/Authentic problem solving
CO-3	Apply the Hahn –branch theorem in normed linear space and its applications, the open multiplying theorem projections on Branch –spaces,	Group discussion

	closed graph theorem.	
CO-4	Explain the concepts of orthogonality, orthonormal sets and Bessel's inequality.	Authentic problem Solving/ Group Discussion
CO-5	Design the conjugate space of a Hilbert spaces and develop the information about the ad joint operators, self –ad joint operators, normal and unitary operators.	Class Assignment/ Seminar/ Group Discussion
CO-6	Demonstration the nature of Brower's fixed point theorem, schauder fixed point theorem and Picard's theorem.	Class Assignment/ Group Discussion/ Authentic problem solving

NAME OF THE DEAPRTMENT: MATHEMATICS

NAME OF THE PROGRAMME:M.Sc. 1st (sem2nd)

NAME OF COURSE : Topology II NAME OF FACULTY : A.P Raveena Saini

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Deduce the knowledge of higher separation Axioms for example Regular , completely Regular, normal and completely normal space	Class Tests/ Class Assignments
CO-2	Explain the metric spaces or completely , normal T2 spaces , urysohans lemma and fietze extension theorem	Class Assignment/ Home Assignment/Authentic problem solving

CO-3	Analyse about embedding of tichonou space into parallel tope and stone cech compactification.	Group discussion
CO-4	Apply knowledge for solve identification topology identification map, subspace, general theorem	Authentic problem Solving/ Group Discussion
CO-5	Compare and contract about the categories and fun tars.	Class Assignment/ Seminar/ Group Discussion
CO-6	Define about the category h top, homotopy equivalence, null homotopy and invariance of path components under homotopy type.	Class Assignment/ Group Discussion/ Authentic problem solving

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR PUNJAB

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT: MATHEMATICS NAME OF THE PROGRAMME: M.Sc. 1st (sem2nd)

NAME OF COURSE : Differential equation 1

NAME OF FACULTY : A.P Rajinder kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Explain about the existence of solution of ordinary differential equation of first order, initial value problem, as coli lemma.	Class Tests/ Class Assignments
CO-2	Deduce the information about Cauchy peano existence theorem and method of	Class Assignment/ Home Assignment/Authentic problem solving

	successive approximations	
CO-3	Analyse about system of differential equations, nth order differential equation and existence and uniqueness of solutions.	Group discussion
CO-4	Define linear system of equation both homogenous and non homogenous.	Authentic problem Solving/ Group Discussion
CO-5	Evaluate the able liouville formula and floquet theory	Class Assignment/ Seminar/ Group Discussion
CO-6	Demonstrate the orthogonality of characteristic functions and expansion of a function a series of orthonormal functions.	Class Assignment/ Group Discussion/ Authentic problem solving

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE BELA ROPAR PUNJAB

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT: Department of computer science

NAME OF THE PROGRAMME: M.Sc. Mathematics-1st(sem1st)

NAME OF COURSE : Introduction to computers and c language

NAME OF FACULTY : AP Taranjeet Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Describe the basic concepts and the applications of computer systems	MST, CLASS TEST, GD
CO-2	Demonstrate the concept of input and output devices of	MST, ASSIGNMENT, PPT

	Computers	
CO-3	Define the anatomy related to networks, operating system and problem solving	MST, PPT, CLASS TEST, ASSIGNMENT
CO-4	Discuss about the logic building used in programming	MST, ASSIGNMENT, CLASS TEST, LAB WORK
CO-5	Generate algorithms writing skills for solving various real-life problems	MST, LAB WORK, PPT, VIVA
CO-6	Convert the algorithms into computer programs using C language.	MST, LAB WORK, CLASS TEST

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE, BFUPNAGAR PUNJAB MAPPING OF PROGRAM OUTCOME VERSUS COURSE OUT

NAME OF DEPARTMENT : MATHEMATICS

NAME OF PROGRAMME : M.Sc. 2nd

NAME OF COURSES : DIFFERENTIABLE MANIFOLDS -MM601, FIELD THEORY -MM602, CATEGORY THEORY I -604 OPTIMIZATION TECHNIQUES-I MM610, OPTIMIZATION TECHNIQUES-I MM610

CORR	CORRELATION LEVEL:1,2, and 3;1-SLIGHT (LOW); 2-MODERATE (MEDIUM) 3- HIGH										MENTION GAP ANALYSIS AT THE END									
S.NO	Year	Semester	Name of Course/Code		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15	
		CO1	3	1	2	3	3	2	1		2	3	3	3	2	2	3			
				CO2	3		2	3	3	2	2	3	2	3	3	3	2	3	3	
1			MANIFOLDS -MM601	C03	3	2	2		3	1	3	3	2	3	3	3	3	2	2	
				CO4	2	1	1			1	1	2	1	2	3	3	2	3	2	
				CO5	3	1	1	2	1			2	3	1	2	2	3	3	3	
				CO6	3	1	2			2		1		3		1	3	3	3	

				001																
				CO1	3	2	1	2	3		1	2	2	3	2	2	2	3	3	
	2 FIELD THEORY -MM60		CO2	2	3	2			1	1	3		2	2	3	3	3	3		
2		FIELD THEORY -MM602	C03	2	3	2	2	2	3	3				2	2	2	2	2		
				CO4	3		2	3	3	3	3	3			2	3		3	3	
					CO5	2	3		1		1		2		2	2	2	2	3	
				CO6	2	3	1		3		3		2		3	3	3	3	3	
				CO1	2	2		3		2		2	3	2	3	3	3	2	2	
				CO2	3	2	3	5	1	2	1	2	2	2	2	2	3	2	2	
						2					1	-				2				
3			CATEGORY THEORY I -604	C03	2	1	3	1	3			2	2	2	3		3	3	3	
					CO4	2	1	2	1	2			2		3		3	3	1	3
	2019-20	3rd			CO5	3	2	2	1		1	2	1	2	2	1	3	3	3	3
	-			CO6	2	2	3	2	2	2	2	3	3	3	3	3	2	2		
				CO1	2	3	2	1	2	1	1		2		2	2	3	2	3	
				CO2	2	2	2		2	1	3	2	1	1	2	2		2	2	
			OPTIMIZATION	C03	2	3	2	1	2	1	2			3	3		3	3	3	
4			TECHNIQUES-I MM610	CO4	2	3	2		2	2	2		3	2	2	2		2	2	
				CO5	2	2	3	2		2	2		2	3	3		3	3	3	
						<u>_</u>				1		1	2			2		3		
				CO6	3		2	2	2	1	2	1		3	3	2	3	1	3	
_			FUZZY SETS AND APPLICATIONS-MM611	CO1	3	3	2	3	2		3	2	1	2	3	3	3	3	3	
5				CO2	3	3	3	1	1	2	2	3	3	3	3	3	3	3	3	
				C03	3	2	2		1	1	1				3	3		3		

				CO4	2	2	2	1				2	3	3	3	3	3	3	3
				CO4	3	3		1	2	3		3	3				1	3	
						3	3		2	3	-	3	3	3	2	2	1	3	
				CO6	3		2	1			3		1	3			3		3
			CO1	2	2	2			3	2	1	2	2	2	3	3	3	3	
				CO2	2	2	2	3	2	1	1		2	3	3	3	3	3	3
6			THEORY OF LINEAR	C03	2	3	1	1	1	1	1		2	2	3	3	2	1	1
Ŭ			OPERATOR -MM702	CO4	2	3	2		3	2		3		2	2	2	2	2	2
				CO5	2	3		1	1	3		1		2	3	3	3	3	3
				CO6	2	3		3	3	3	2		2	1		2	3	3	3
				CO1	3	1	2	3	3	2	1		2	3	3	3	2	2	3
				CO2	3		2	3	3	2	2	3	2	3	3	3	2	3	3
			CATEGORY THEORY -II-	C03	3	2	2	5	3	1	3	3	2	3	3	3	3	2	2
7			MM704	C03		1	1		5	1			1						
					2	1	1			1	1	2	1	2	3	3	2	3	2
				CO5	3	1	1	2	1			2	3	1	2	2	3	3	3
	-			CO6	3	1	2			2		1		3		1	3	3	3
				CO1	3	2	1	2	3		1	2	2	3	2	2	2	3	3
				CO2	2	3	2			1	1	3		2	2	3	3	3	3
8			OPTIMIZATION TECHNIQUES-II MM 705	C03	2	3	2	2	2	3	3				2	2	2	2	2
	2019-20 4	4th		CO4	3		2	3	3	3	3	3			2	3	3	3	3
				CO5	2	3		1		1		2		2	2	2	2	3	3
				CO6	2	3	1		3		3		2		3	3	3	3	3

				CO1	2	2		3		2		2	3	2	3	3	3	2	2
			NON LINEAR PROGRAMMING -MM713	CO2	3	2	3		1		1		2		2	2	3	2	2
9				C03	2	1	3	1	3			2	2	2	3		3	3	3
9				CO4	2	1	2	1	2			2		3		3	3	1	3
				CO5	3	2	2	1		1	2	1	2	2	1	3	3	3	3
				CO6	2	2	3	2	2	2	2	3	3	3	3	3	2	2	2
			MATHEMATICAL METHOD - MM716	CO1	2	3	2	1	2	1	1		2		2	2	3	2	3
				CO2	2	2	2		2	1	3	2	1	1	2	2	3	2	2
10				C03	2	3	2	1	2	1	2			3	3		3	3	3
10				CO4	2	3	2		2	2	2		3	2	2	2		2	2
				CO5	2	2	3	2		2	2		2	3	3		3	3	3
				CO6	3		2	2	2	1	2	1		3	3	2	3	1	3

Attainment of PO by Direct Method

	COURSE ATTAINMENT CALCULATION FOR ALL COURSES IN THE SEMESTER																	
										AN	1AR :	SHAHE	ED BABA AJIT SING	H JUJHAR SINGH		E, ROPAR PUN	JAB	
														INTE	RNAL QUALITY ASS	URANCE CELL		
PROGRAMME: PROGRAMME: M.Sc. MATHEMATICS SEMESTER:4th YEAR:2nd(session2018-19)								DATE	DATE OF DECLARATION OF RESULT BY UNIVERSITY:01-09-2019									
S. N O.	NAME OF STUDE NT	CLA SS R.N O.	UNIVE RSITY R. NO.	REGISTR ATION NO.		SUBJ DRY OF ATOR(CC		1702)		SUBJECT 2:OPTIMIZATIC TECHNIQUES(CO E:MM705)	N		SUBJECT3:OPER ATION RESEARCH(COD E:MM711)	SUBJECT 4:NON LINEAR PROGRAMMI NG(CODE :MM713)	SUBJECT 5:MATHEMATIC ALS METHODS(COD E:MM716)	TOTAL OF ALL SUBJECTS/C OURSES	% age/C GPA	ATTAIN MENT LEVEL
					Theo ry	Inter	Pract ical (If Any)	TOT AL (T+I +P)	т	1	Р	TOT AL						
1	Simran jit Kaur	320 1	12801	814-13- 311				B+				B+	A	A	0	8	76	
2	Manjee t Kaur	320 2	12802	811-14- 161				A+				А	A+	A+	0	8.47	80.4	

	Rupind er	320 3		4122-15-								
3	Kaur		12803	108	А	A+	A+	A+	A+	8.8	83.6	
4	Khush boo	320 4	12804	814-17- 508	A	B+	В+	В	A	7.2	68.4	
4	Kamal		12004			Бт	Бт	В	A	7.2	08.4	
	preet	320 5		811-12- 282								
5	Kaur	5	12805	202	B+	С	А	B+	B+	6.8	64.6	
6	Aman deep Kaur	320 7	12806	814-14- 332	A	B+	A	А	A+	8	76	
-	Mande	220	12000	014.14					7.		70	
	ep Kaur	320 8		814-14- 341								
7		0	12807	541	А	В	B+	A	A+	7.6	72.2	
	Sande	320		811-12-								
8	ep Kaur	9	12808	266	А	В	B+	B+	A+	7.4	70.3	
		321		814-13-								
9	Apsana	0	12809	329	А	В	В	B+	A+	7.2	68.4	
1	Amand	321		811-13-								
1 0	eep Kaur	1	12810	298	A+	В	B+	А	A+	7.8	74.1	
1	Rekha	321	12010	814-17-			5.			,	,	
1	Singh	2	12811	500	А	А	А	А	A+	7.83	74.3	
	Amand	321		814-14-								
1	eep Kaur	3	12812	344	A+	B+	А	A	A+	7.83	74.3	
1	Harpre	321	12012							7.05	74.5	
3	et Kaur	4	12813		А	B+	А	В	А	7.4	70.3	
1	Daljit	321		811-14-								
4	Kaur	5	12815	578	А	B+	B+	В	A	7.2	68.4	
1	Amand	321		811-14-								
5	eep Kaur	6	12816	533	А	B+	А	B+	А	7.6	72.2	

1 6	Surind er Kaur	321 7	12817	811-13- 300			A		B+	В+	B+	A+	7.6	72.2	
1	Manin der Kaur	321 8	12818	814-14- 333			A+		B+	A	B+	A	7.8	74.1	
					SUBJ										
				AVERAG	ECT			SUBJECT 2		SUBJECT 3	SUBJECT 4	SUBJECT 5			

Average Attainment of PO by direct method is 72.92 %

Attainment of PO by indirect Method

POs	DEGRE	EE OF REL	*% of PO	Level of attainment			
	No. of 1	No. of 2	No. of 3	No. of 4	No. of 5		
1				13		80	level 3
2				10	3	84.61	level 3
3		3		5	5	78.46	level 3
4				11	2	83	level 3
5			2	9	2	80	level 3
6		3	9	1		80	level 3
7		1	2	5	5	84.61	level 3
8			1	2	10	83	level 3
9		1	5	8		85	level 3
10			9		1	78.46	level 3

Average PO attainment by indirect method= 81.714 %

Total PO attainment (%) = (weightage: 80 %) X (Average attainment in direct method) + (weightage: 20 %) X (Average attainment in indirect method)

= (80%) X 72.92 + (20%) X 81.71

= 74.67%

Level of Attainment = Level 3